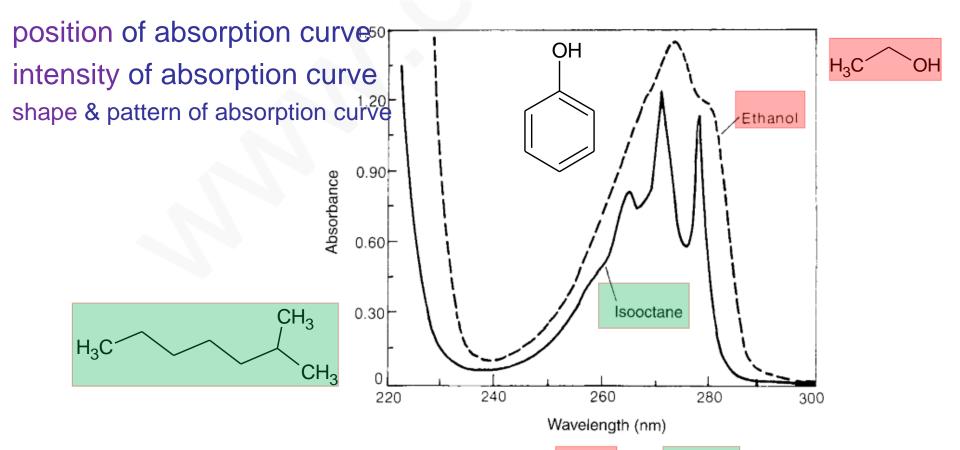
Ultra-Violet / Visible Spectroscopy-Section 3


Effective Factors on Absorbance

- Solvent characteristics:
- ✓ non/polar
- ✓ non/protic
- ✓ hydrogen bonding ability

TABLE 7. SOLVENT CU			
Acetonitrile	190 nm	<i>n</i> -Hexane	201 nm
Chloroform	240	Methanol	205
Cyclohexane	195	Isooctane	195
1,4-Dioxane	215	Water	190
95% Ethanol	205	Trimethyl phosphate	210

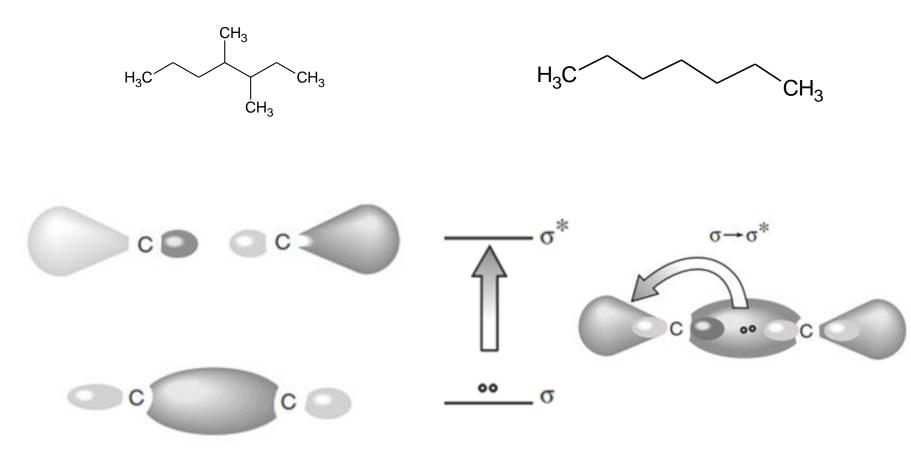
- ✓ solvent-solute interactions can affect electron levels
- \checkmark hence affect E & v & λ required for electron transitions
- Concentration of solute: number of chromophores
- □ Effective factors can change:
- ✓ position of absorption curve
- \checkmark intensity of absorption curve
- ✓ shape of absorption curve

Example: UV Absorption Curve of Phenol in Ethanol & Isooctane

FIGURE 7.5 Ultraviolet spectra of phenol in ethanol and in isooctane. (From Coggeshall, N. D., and E. M. Lang, *Journal of the American Chemical Society, 70* (1948): 3288. Reprinted by permission.)

Chromophore in UV Absorption

- Atoms & functional groups which are responsible for absorption of UV radiation
- Two common types of chromophores:
- \checkmark those which contain only π electrons: undergo π - π^* transitions
- ✓ those which contain π electrons & nonbinding (n) electrons: provide two types of electron transitions: π - π *& n- π * transitions


Auxochrome in UV Absorption

- Auxochrome is also called color enhancing group
- Atoms & functional group which:
- does not change sample's absorption characteristics
 changes absorption characteristics of a chromophore
- Common auxochromes: OH; Me; OMe; X; amine

Common Changes in UV Absorption Curves

- Red shift or bathochromic effect:
- ✓ shift the curve to right side:
- \checkmark shift λ_{max} to right side: longer λ
- ✓ by presence of auxochrome or by change in sample solvent
- Blue shift or hypsochromic effect:
- ✓ shift the curve to left side:
- \checkmark shift λ_{max} to left side: shorter λ
- \checkmark by removal of a conjugation or by change in sample solvent
- Hypochromic effect: hypo-chromism:
- \checkmark decrease the intensity of absorption
- Hyperchromic effect: hyper-chromism:
- \checkmark increase the intensity of absorption

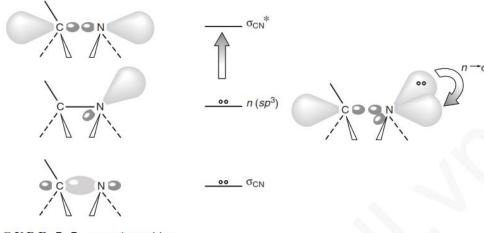
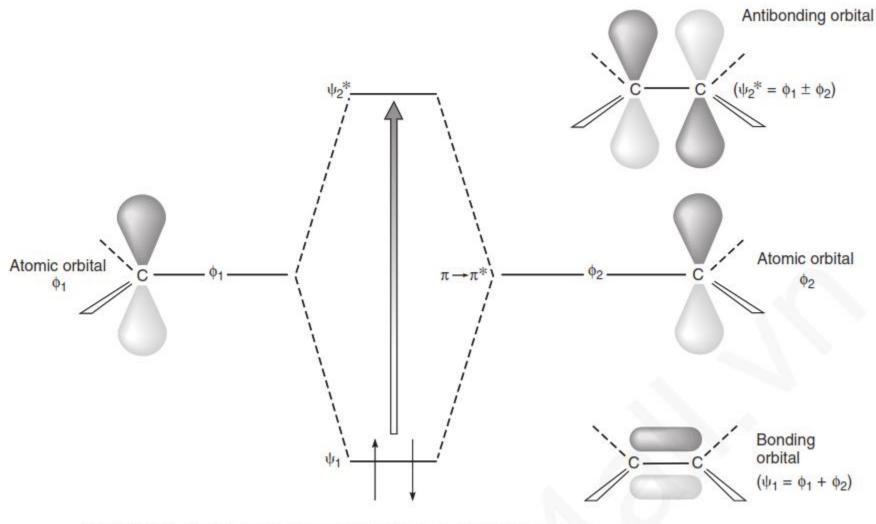

Electron Transition for C-C Bond in Alkane

FIGURE 7.6 $\sigma \rightarrow \sigma^*$ transition.

Electron Transition for Functional Groups Possessing Non-Bonding Electron Pair

- Functional groups possessing non-bonding electron pair Includes $n-\pi^*$ transitions:
- ✓ -O-H in alcohol (R-OH): 175-200nm
- ✓ -O-C in ether (R-O-R')
- ✓ -N-H in amine (R-NH₂; R-NH-R'; R-N(R')R"): 175-200nm

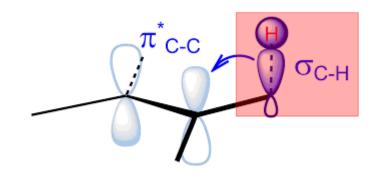
✓ -S-H in thiol (R-SH): 200-220nm
 ✓ -S-C in thio-ether (R-S-R'): 200-220nm

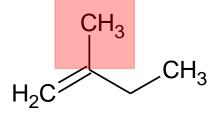

Electron Transition for Un-Saturated Functional Groups: C-C Bond in Alkene

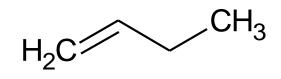
- Alkene: π π^* transition: λ_{max} = ... nm
- Alkyne: π π^* transition: λ_{max} = ... nm

FIGURE 7.8 $\pi \rightarrow \pi^*$ transition.

Electron Transition for Alkene: Ethylene

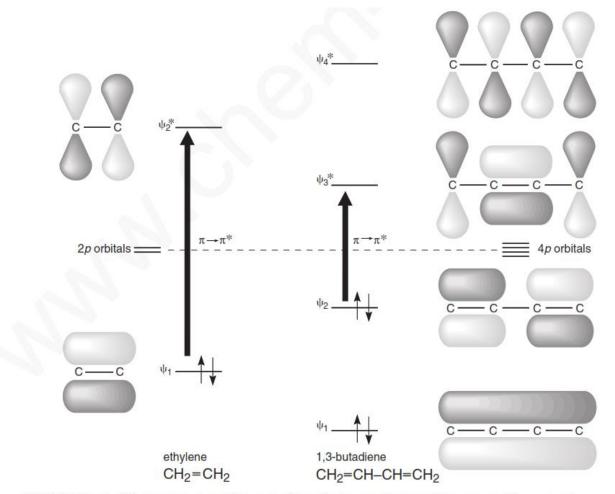

SKAMINI Fed2024

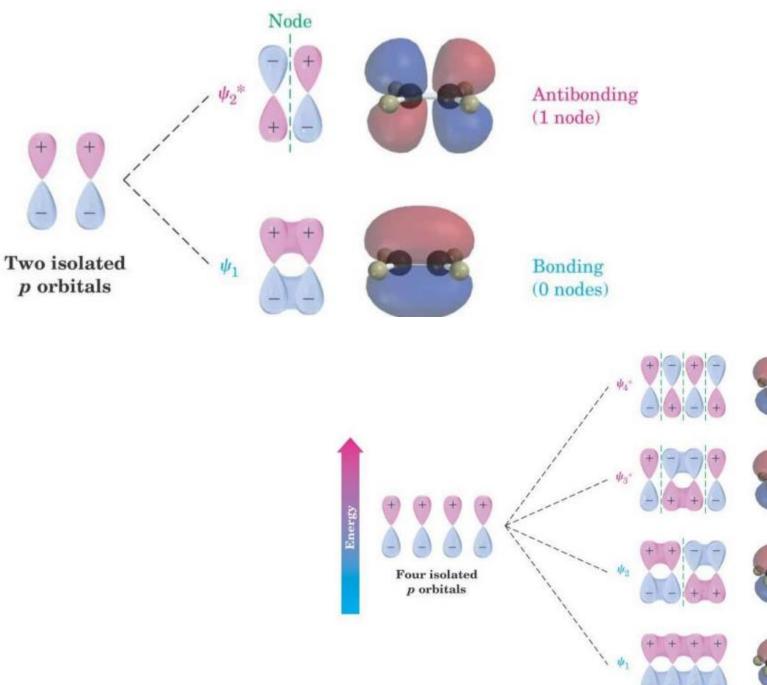

11



- Hyper-conjugation of $\sigma \pi$ provides:
- ✓ bathochromic effect
- ✓ hyperchromic effect

&





Comparing Electron Transition for Ethylene & 1,3-Butadiene

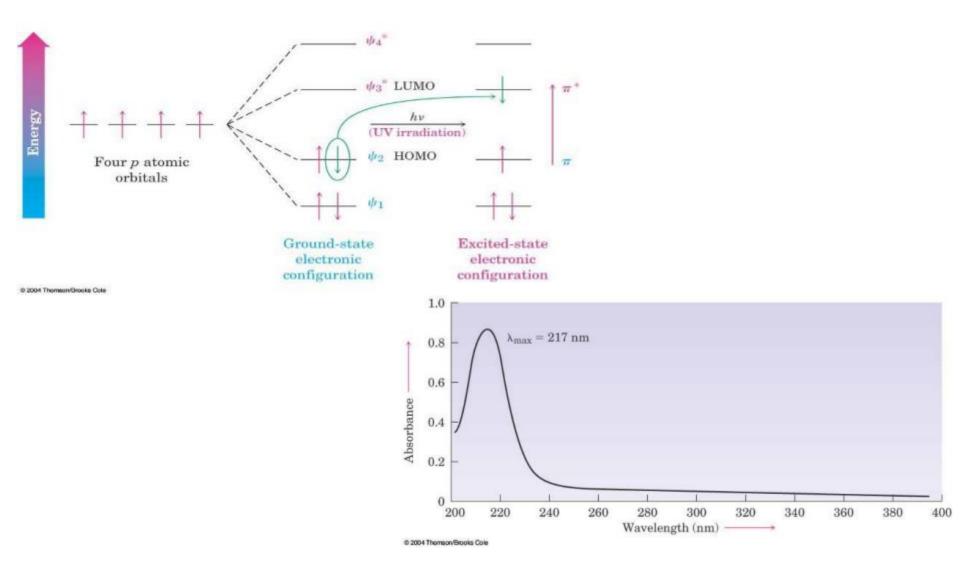
• Conjugated dienes: λ_{max} =217-245nm; ε = 20,000 to 26,000

FIGURE 7.12 A comparison of the molecular orbital energy levels and the energy of the $\pi \rightarrow \pi^*$ transitions in ethylene and 1,3-butadiene.

@ 2004 Thomson/Brooks Cole

Antibonding (2 nodes)

Antibonding

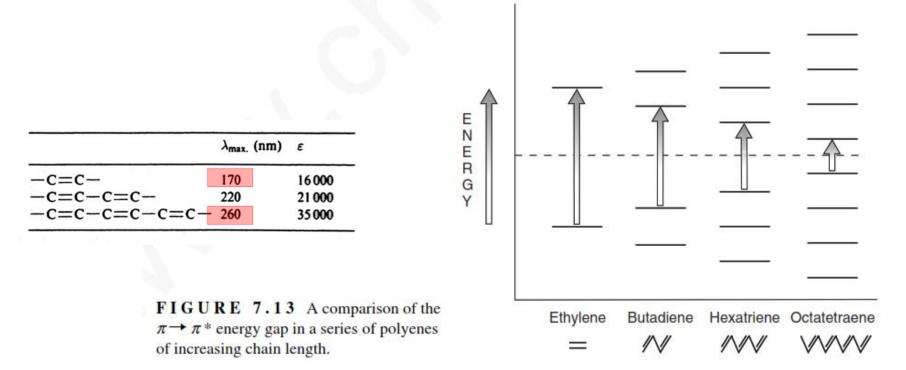

(3 nodes)

Bonding (1 node)

.....

Bonding (0 nodes)

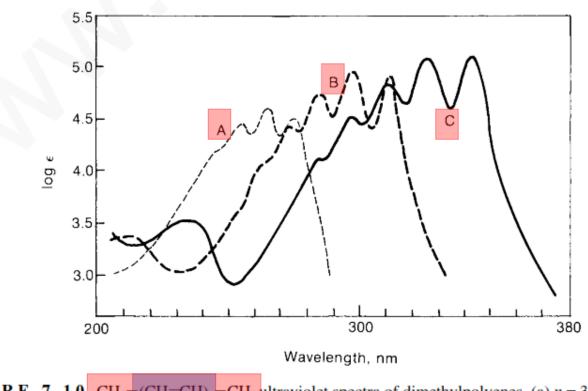
UV Spectrum for Butadiene



SRAmini Feb2024

Electron Transitions for Alkenes & Polyenes

• Polyenes as conjugated dienes:


 $\checkmark \lambda_{max} = 217 - 260 - \dots 460 \dots$ nm; $\varepsilon = 20,000$ to 35,000

Discuss about the effect of alkyls as substitutes on dienes.

UV Spectra for a Couple of Conjugated Dimethyl-Polyenes (n)

- A: n = 3
- B: n = 4
- C: n = 5

FIGURE 7.10 CH₃+(CH=CH)_n-CH₃ ultraviolet spectra of dimethylpolyenes. (a) n = 3; (b) n = 4; (c) n = 5. (From Nayler, P., and M. C. Whiting, *Journal of the Chemical Society* (1955): 3042.)

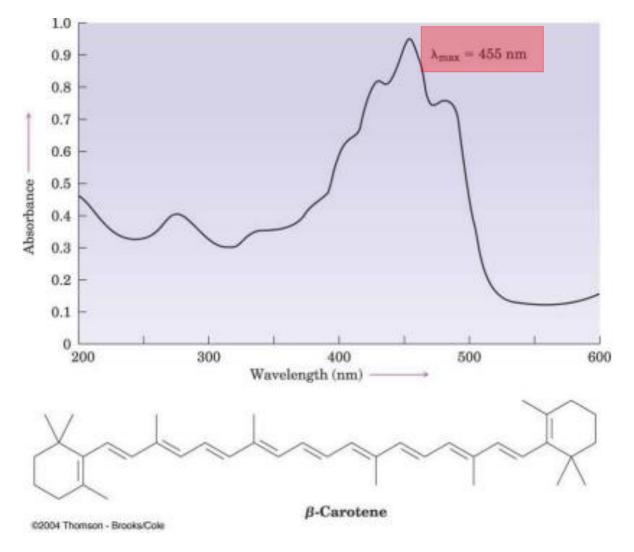
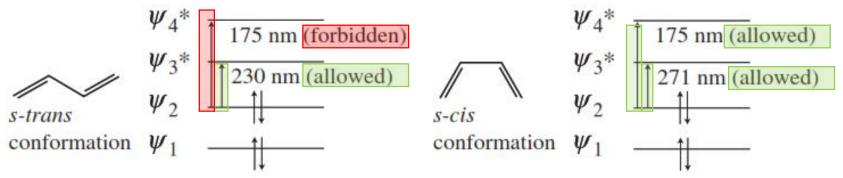

Conjugated Alkenes & Carbonyls as Chromophores

TABLE 7.4

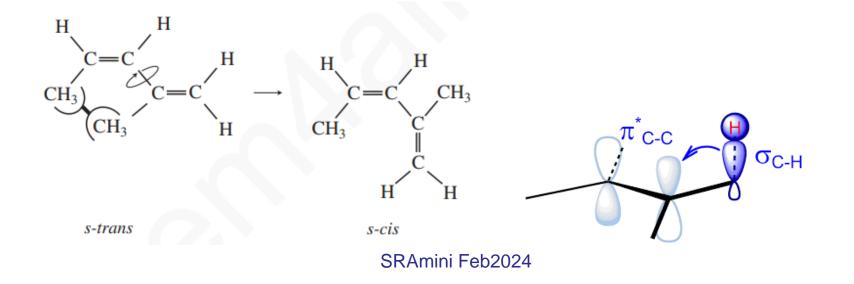
EFFECT OF CONJUGATION ON ELECTRONIC TRANSITIONS

	λ _{max} (nm)	ε
Alkenes		
Ethylene $H_2C = CH_2$ 1,3-Butadiene $H_2C = CH_2$	175	15,000
1,3-Butadiene H ₂ C ^{CH} ₂	217	21,000
	H ₂ 258	35,000
β -Carotene (11 double bonds)	465	125,000
Ketones	CH ₃ CH ₃	H ₃ C CH ₃
Acetone		ĊH ₃ ĊH ₃ H ₃ C
$\pi \rightarrow \pi^*$	189	900
$n \rightarrow \pi^*$ H_3C CH_3	280	12
3-Buten-2-one		
$\pi \rightarrow \pi^*$	213	7,100
	320	27


UV Spectrum for Beta-Carotene

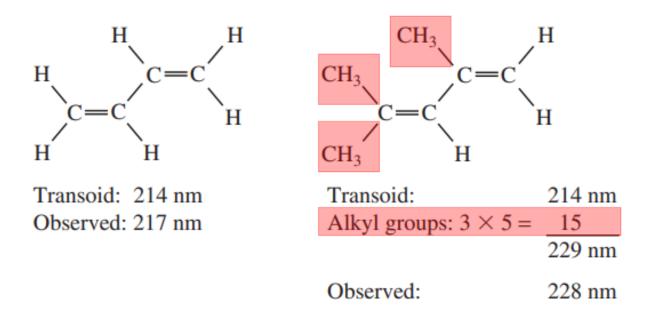
Electron Transitions for Stereoisomers (cis/trans) in Conjugated Alkenes (Butadiene)

Compare allowed electron transitions in trans & cis conformations.


- Which λ is supposed to be observed as λ_{max} for UV absorption of a sample of butadiene?

✓ conjugated dienes: λ_{max} = 217-245nm; insensitive to the nature of the solvent

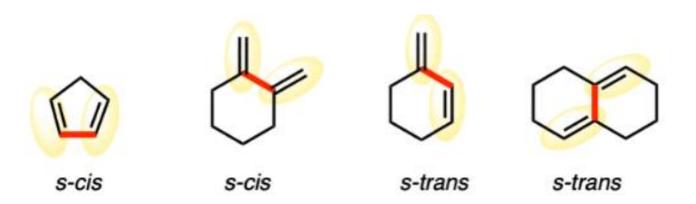
- \checkmark cis conformation: longer λ & less intensity & less molar absorptivity (ε) is assumed
- How will absorbance be changed in $\lambda \& \varepsilon$, if we have alkyl/s as substitute on butadiene? Next slide.


Electron Transitions for Dienes Possessing Alkyls as Substitutes

- Alkyl group provides hyper-conjugation of σ π on double bond's electronic characteristics:
- ✓ hence alkyl group provides bathochromic effect on UV characteristics.
- Alkyl group in dienes provides less intensity due to the steric effect: cis-isomer is the more favorable isomer.

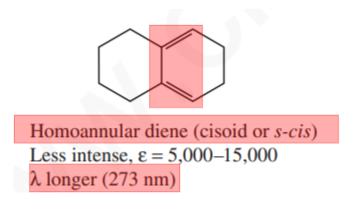
Woodward & Fieser Rules to Calculate Theoretical Maximum Absorbance Wavelength of Alkylated Dienes

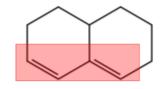
- Inductive effect of alkyl: hyper-conjugation: σ - π conjugation
- Provide bathochromic effect:
- ✓ each methyl group: 5 nm bathochromic effect



 σ_{C-H}

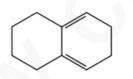
Compare Cis & Trans Butadiene Backbone



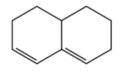

In cyclic and locked structures:

Electron Transitions & Maximum Wavelength for Cyclic Dienes

- Rigidity in conformation of transoid & cisoid, both.
- Two types due to steric conformation of double bonds:
- ✓ homoannular diene (cisoid): less intensity & ϵ ; longer λ_{max}
- ✓ heteroannular diene (transoid): more intensity & ϵ ; shorter λ_{max}



Heteroannular diene (transoid or *s*-*trans*) More intense, $\varepsilon = 12,000-28,000$ λ shorter (234 nm)


 $\Delta = 39$

SRAmini Feb2024

Woodward & Fieser Rules to Calculate Theoretical Maximum Absorbance Wavelength of Homo/Hetero-Annular Structures

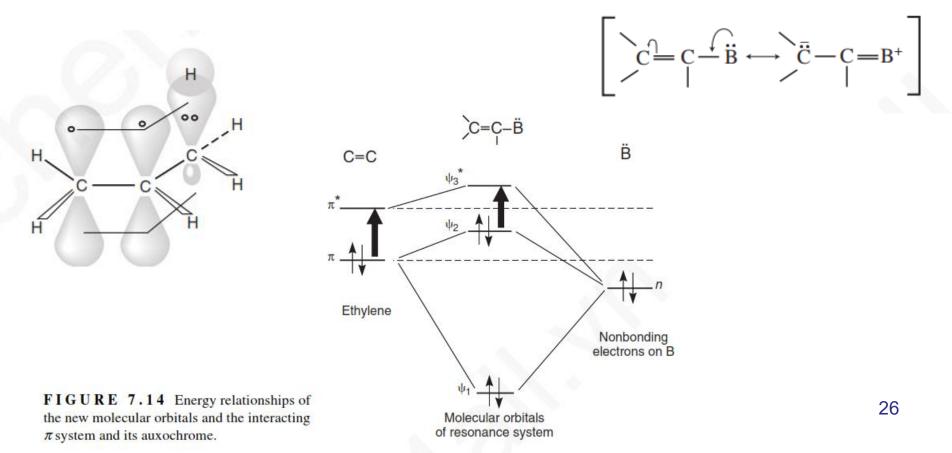

Heteroannular diene (transoid or s-trans)

TABLE 7.5 EMPIRICAL RULES FOR DIENES

	Homoannular <u>∆</u> (cisoid)	Heteroannular (transoid)
Parent	$\lambda = 253 \text{ nm}$	$\lambda = 214 \text{ nm}$
Increments for:		
Double-bond-extending conjugation	30	30
Alkyl substituent or ring residue	5	5
Exocyclic double bond	5	5
Polar groupings:		
-OCOCH ₃	0	0
-OR	6	6
-Cl, -Br	5	5
$-NR_2$	60	60

Electron Transition for Ethylene with a Substitute Possessing Lone Pair

- Hyper-conjugation:
- \checkmark extension of π system by resonance effect of lone pair
- ✓ decrease conjugation due to inductive effect of heteroatom

